Understanding the r-process
F. Montes
Joint Institute for Nuclear Astrophysics
National Superconducting Cyclotron Laboratory

- r-process
- Nuclear physics
- CARIBU (Masses, half-lives and β -delayed neutron branching ratios)

Open questions:

- Where does the r-process occur?
- What are the actual reaction sequences?
- Are there multiple processes in the early Galaxy?
- What can the r-process tell us about physics of extreme environments?

Metal-poor stars

Multiple r-processes?

r-process:

Most of the elements

heavier than Sr

LEPP: Only Sr - Ag?

Light Element Primary Process LEPP

- Weak r-process (Truran&Cowan 2000)
- Charge-particle reaction process
 (Woosley&Hoffman 1992; Freiburghaus et al. 1999)

Nucleosynthesis processes

Where does the r-process occur?

Neutron star mergers (Freiburghaus et al. 1999, Goriely et al. 2005) Mergers rate too low to explain [Eu/Fe] ratio Composition of ejected material unknown

Gamma ray bursts (Surman et al. 2005)

Supernovae

ONeMg core collapse (Wanajo et al. 2003) Y(n) not high enough Jets in core-collapse supernovae (Cameron 2001) v-driven wind (Woosley et al. 1992, Terasava et al. 2001) entropy not high enough Neutrino-induced in He-shells (Epstein et al. 1988, Banerjee et al. 2011)

V-driven wind scenario

V-driven wind simulation

Hot r-process

Cold r-process

Arcones & Martinez-Pinedo 2011

Competition between beta decay and neutron capture (Blake & Schramm 1976, Wanajo 2007, Janka & Panov 2009)

Location of path $S_n = 2-4 \text{ MeV}$

Need:

- Neutron capture rates (masses)
- Half-lives
- Weutron emission probabilities
- Maybe fission and neutrino interaction rates

Sensitivity of r-process to astro and nuclear physics

Sensitivity to nuclear physics

Comparison to observations:

- Obtain neutron density, temperature, time
- Weutrino interactions
- Determines which model is correct
- Convoluted with nuclear physics

Shell quenching effect on masses/r-process

Shell quenching effect on masses/r-process

CARIBU beam intensities

Mass measurements status

Possible CARIBU mass measurements

Possible CARIBU half-life measurements

β-decay spectroscopy

Possible P_n measurements:

- Extend to ⁸²⁻⁸³Zn, ⁸⁵⁻⁸⁶Ga, ⁸⁸Ge, ⁸⁹Ge, ⁸⁹As, ⁹⁴Se and ⁹⁶Br
- Progenitor of Sr,Y, Zr abundances (disentangle main r-process and LEPP)
- Nuclear physics in solid basis in the A=80-95 region

Summary

- New observations will require similar advances in nuclear physics to address the many compelling scientific questions of the r-process
- Neutron-rich nuclei far from stability are important in the r-process
- CARIBU rates will enable the study of nuclei relevant for r-process nucleosynthesis

- Mass measurements (δ <10-100 keV) will have a direct effect on r-process calculations and will address the question about shell-quenching at the N=82 shell closure
- \bullet Half-lives and P_n measurements will put the nuclear physics in the r-process responsible for Sr,Y and Zr abundances in a solid basis